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Photonic technology combined with artificial intelligence plays a key role in the development of the latest smart
system trends, integrating cutting-edge technology with machine learning models. This paper proposes a trans-
mission-reflection analysis based system using dielectric nanoparticle-doped fiber combined with artificial intel-
ligence to address one of the major problems in the distributed sensing approach: reducing the cost while
maintaining high spatial resolution to close the gap between distributed sensors and the general public.
Machine learning-based models are designed to classify the perturbed positions when the same force is used
and force regression when different forces are applied on each position. The results show an accuracy of
99.43% in the position classification of multiple disturbances and an rms error of 1.53N in the force regression,
which represents 5% of the force range. In addition, a smart environment using the current system is proposed,
which presented 100% accuracy in identifying the positions of different persons in the environment. This smart
environment enables remote home care of patients with high reliability, intelligent decision-making, and a pre-
dictive capability. © 2023 Chinese Laser Press

https://doi.org/10.1364/PRJ.471301

1. INTRODUCTION

The Internet of Things (IoT) has revolutionized the global
world by enabling interconnection between several smart devi-
ces through wireless communications [1,2]. Photonic-based
technology is a potential alternative for next-generation com-
munications systems, which could deliver very high-speed,
reliable data transmission. For next-generation sensor systems,
photonics-based sensors also offer multiplexing and miniaturi-
zation capabilities, especially as a solution for the challenges of
IoT technology [3,4]. As an IoT strand, smart cities enable
novel technologies to be interconnected to provide high-quality
basic services through relevant information, improving the
quality and lifestyle of city residents [5]. This concept covers
transportation, healthcare, and personal homes/offices [6].

Digital health can be defined as the intersection between
digital technology and healthcare services, which includes dig-
ital information, data, and communications technologies to
collect, share, and analyze health information [7]. The wide-

spread use of digital health technologies has increased in the
medical field, motivated by the aging population [8]. When
combined with artificial intelligence (AI) technology, digital
health technologies can improve diagnosis, treatment, clinical
decision support, and care management. In addition, digital
health technologies can be scaled to reach thousands of people,
which can improve both the clinical health status of patients [9]
and healthcare delivery [10], while also reducing the cost of
care [7].

The fusion of emerging AI technology with photonic sen-
sors has promoted a new era of intelligent sensing, mitigating
impairments in optical systems and resulting in a technology
able to perform a more complicated and comprehensive analy-
sis [11]. From physics-inspired optical designs, the future is
heading toward data-driven designs that will change both op-
tical hardware and next-generation software systems [12].

Regarding current photonic sensing technology, optical
fiber sensors (OFSs) present several intrinsic advantages:
OFSs are lightweight, compact, chemically stable, immune
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to electromagnetic fields and have multiplexing capabilities
[13,14]. OFSs are also compatible with the requirements of
IoT technology [15], which mainly relies on the wireless con-
nectivity of several miniaturized sensors that offer low energy
consumption [16]. The combination of OFS and IoT technol-
ogies has had a major impact on the concept of digital health
[17,18]. This combination has the potential to produce better
outcomes for patients, by providing intelligent health data ana-
lytics and guaranteeing preventive medicine and care for the
elderly [8], since these sensor systems allow the continuous
monitoring of patients’ activities [17], which results in remote
assistive services, early detection of health issues, and transport
in case of emergencies [19].

OFS can be classified based on spatial positioning, in which
the sensors can measure punctually or along the fiber [20].
This classification is divided into three types: punctual, quasi-
distributed, or distributed sensors. Punctual sensors provide the
value of a physical parameter of interest locally [21], whereas
distributed sensors provide the value of a physical parameter
over a distance and as a function of the position along the fiber
[22]. In quasi-distributed sensors [23], such as the fiber Bragg
grating (FBG) sensor systems [24], the variable is measured at
discrete points along the fiber.

A distributed OFS is a very attractive approach to locate
loss-inducing perturbations along the fiber [25]. The backscat-
tering-based sensing technology is often employed for the
localization of a loss-inducing perturbation, in which the
two main methods are optical time domain reflectometry
(OTDR) [26] and optical frequency domain reflectometry
(OFDR) [27]. However, these methods use modulated light
sources and demand interrogation systems that are complex
and costly [28], which make them impractical for massive
deployment and unavailable for the general public.

Transmission-reflection analysis (TRA) is a simple, in-
expensive technique developed to locate loss-inducing pertur-
bation based on measurement of the transmitted and
backscattered powers of an unmodulated light source [29,30].
Despite its simplicity and low cost, the TRA technique is de-
veloped for single perturbation tracking and presents poor spa-
tial resolution (∼m) when applied to standard silica fibers due
to a low Rayleigh backscattering signal [31,32]. An alternative
to increase the Rayleigh backscattering power is using silica op-
tical fibers containing oxide nanoparticles, so-called dielectric
nanoparticles-doped (DNP-doped) fibers [33]. The DNP-
doped high scattering fibers are an attractive solution to en-
hance the spatial resolution of TRA-based systems [34], such
as presented in Ref. [32], which reported an improvement in
the spatial resolution using a MgO-doped fiber (spatial resolu-
tion in mm).

The cost reduction of distributed OFSs can be useful for
applications in fields such as healthcare that involve the general
public. To achieve a low-cost distributed system with a spatial
resolution of cm, this paper presents the combination of a
TRA-based sensor using DNP-doped fiber and AI algorithms,
resulting in an AI-integrated optical fiber sensing approach, as
shown in Fig. 1. Classification and regression neural network
models are designed to characterize the system under multiple
simultaneous disturbances using the same (or different) forces.

Furthermore, to validate the proposed system in a healthcare
application and to close the gap between distributed sensing
technology and the general public, the system is embedded
in a room simulating a small house to evaluate its ability to
identify the position of different people in the environment,
resulting in cutting-edge technology accessible to the general
population.

2. MATERIALS AND METHODS

The materials used in this setup are divided into three parts: the
light source, the acquisition system, and the optical fibers. The
superluminescent diode (SLED) centered at 1550 nm with a
bandwidth of 60 nm (DL-BP1-1501A, Ibsen Photonics,
Farum, Denmark) was employed as the light source. The ac-
quisition system consists of two photodetectors (PDs;
GT322D, Go4fiber Ltd., Hong Kong, China), two transimpe-
dance amplifiers (TIAs; TLV3541, Texas Instruments, Dallas,
USA), a microcontroller unit (MCU; Kinetis K25Z, NXP
Semiconductors, Eindhoven, the Netherlands), and a com-
puter. An optical circulator (OC) is employed to connect
the reflected optical power to one PD, whereas the other
PD is directly connected at the optical fiber to acquire the trans-
mitted optical power. Each PD is coupled to the TIAs and the
signal acquisition is performed by the microcontroller and
transmitted to the computer for data processing.

The fiber used in this setup is a DNP-doped fiber, which is
fabricated following the guidelines presented in Ref. [35]. The
standard solution doping technique is used to incorporate Mg
ions, which trigger the formation of Mg-silicate nanoparticles
during the modified chemical vapor deposition (MCVD) pro-
cess, and Er ions, which are mainly located in the nanoparticles.
In addition, germanium (1.85%, molar fraction) and small
amounts of phosphorus (0.8%, molar fraction) were added

Physics-inspired photonic sensor

Artificial Intelligence

AI-integrated optical fiber sensing approach

Machine-learning modelData preprocessing

Broadband
light source

Optical Fiber

Backscattering
optical power

Transmitted
optical power

Fig. 1. AI-integrated optical fiber sensing approach as a result of the
combination of a photonics sensor and machine learning.
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to raise the core refractive index and ease the fabrication of these
fibers. It is important to mention that no particle bigger than
100 nm was observed in this fiber.

A. System Characterization
Two experimental protocols were performed to characterize the
system under multiple simultaneous disturbances. These pro-
tocols are performed to evaluate the transmitted and reflected
optical power when disturbances are applied simultaneously on
different points along the 150 cm long fiber. Protocol 1 consists
of different combinations of disturbances using the same force,
including single and multiple simultaneous perturbations. Six
points are defined, separated by 15 cm. The goal of this char-
acterization is to identify the disturbance points (when the same
force is applied) by analyzing the transmitted and reflected op-
tical powers. Protocol 2 consists of different combinations of
multiple disturbances using different forces and the same points
of Protocol 1. Figure 2 presents the experimental setup of the
characterization.

Since new data do not depend on past elements in this ap-
plication, the selected machine learning algorithm was the feed-
forward neural network (FFNN), which is generalized and
simple to train with full connectivity between adjacent layers.
Two FFNN models were designed, as shown in Fig. 3, by ana-
lyzing the transmitted and reflected powers (input): one to clas-
sify the disturbance event at six predefined points and the other
to model a force regression for each predefined point, which
can identify which point was disturbed and which force was
applied on each point.

Two hidden layers, hidden layer 1 and hidden layer 2, were
included with, respectively, 600 and 300 neurons after empiri-
cal validation. The activation function used in the hidden layers
was the rectified linear activation function (ReLU), whereas the
activation function used in the output layer is the sigmoid for
Protocol 1, since it is a multilabel classification, and linear for
Protocol 2. The data is divided into training (80%) and testing
(20%), and randomly permuted. Also, the input data (trans-
mitted and reflected powers) are normalized between −1 and
1. The mean squared error (MSE) is used as a loss for both
protocols. For Protocol 1, accuracy is used as the classification
metric. Moreover, confusion matrices are calculated for differ-

ent trials (10) with the data randomly permuted. For Protocol
2, root mean square error (RMSE) is used as the regression
metric.

The disturbances combination of Protocol 1 is presented in
Table 1, where 1 represents a disturbance at the respective
point (Px, 1 ≤ x ≤ 6) and 0 represents no disturbance at
the point. In the same way, Table 2 presents the combination
of different and simultaneous forces (N) applied on the same
points Px.

B. Smart Environment Based on the Proposed
System
A 6 m × 6 m room, simulating a small house, is instrumented
with the proposed system. Thus, the smart environment
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Table 1. Combination of the Multiple Simultaneous
Disturbances in Protocol 1 (Disturbance Classification)

Combination P1 P2 P3 P4 P5 P6

1 1 0 0 0 0 0
2 0 1 0 0 0 0
3 0 0 1 0 0 0
4 0 0 0 1 0 0
5 0 0 0 0 1 0
6 0 0 0 0 0 1
7 1 1 0 0 0 0
8 1 0 1 0 0 0
9 1 0 0 1 0 0
10 1 0 0 0 1 0
11 1 0 0 0 0 1
12 0 1 1 0 0 0
13 0 1 0 1 0 0
14 0 1 0 0 1 0
15 0 1 0 0 0 1
16 0 0 1 1 0 0
17 0 0 1 0 1 0
18 0 0 1 0 0 1
19 0 0 0 1 1 0
20 0 0 0 1 0 1
21 0 0 0 0 1 1
22 1 1 1 0 0 0
23 0 1 1 1 0 0
24 0 0 1 1 1 0
25 0 0 0 1 1 1
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comprises six principal places: entrance carpet, chair, bathroom
handrail, bedroom carpet, bed, and desktop, as shown in Fig. 4.
The DNP-doped fiber (20 m length) is incorporated in all these
places. In the TRA setup, which is presented in the Section 2.A,
the transmitted and reflected optical powers indicate the posi-
tion of the person in the environment, since previous results
showed the ability to identify the disturbance location in the
fiber. In this way, the smart environment protocol is divided
into two parts. The first part consists of one person accessing
all the predefined places (locations) sorted in ascending order
(L1 to L6) while the transmitted and reflected optical powers
are acquired. The second part consists of two persons randomly
accessing different places.

For the smart environment protocol, an FFNN classification
model is also designed to identify the places in the house the
person (or persons) accessed using the transmitted and reflected
optical powers as the input data, as previously shown. The data
are divided into training (80%) and testing (20%), and are as-
sociated with their respective classes (places). The input data are
normalized between −1 and 1. The FFNN model is evaluated
by the accuracy and loss (MSE). With the designed model, it is
possible to perform the online classification of new data.

3. RESULTS AND DISCUSSION

A. System Characterization
The normalized transmitted and reflected optical powers are
the input 1 and input 2 of the FFNN model, as shown in
Fig. 3, which pass through two hidden layers and then result
in the outputs; i.e., the disturbance classification (Protocol 1) or
the force regression (Protocol 2) among the six possible posi-
tions. These approaches (both protocols) address a critical
drawback in TRA-based systems; i.e., the issue of assessing si-
multaneous perturbations along the fiber. Conventionally,
TRA-based systems use the transmission and reflection data

to estimate the position of a mechanical perturbation in the
fiber, and the use of this approach in conjunction with machine
learning enables the detection of multiple perturbations (up to
three simultaneous perturbations, in this case) along the
optical fiber. Furthermore, the spatial resolution of 15 cm is
obtained, which is the distance between two consecutive clas-
sification regions and it comprises a length smaller than the
length of a human foot. Figure 5 shows the transmission
and reflection optical powers for three cases during Protocol
1 (using the same force): single-point perturbation, two-point
perturbation, and three-point perturbation.

In Protocol 1, the results in Fig. 5 show that both the re-
flected and transmitted optical powers varied with the position
and number of perturbations along the fiber. Thus, the use of
the FFNN classification model enables the correct classification
of each perturbation, even when multiple perturbations are

Table 2. Combination of Different and Simultaneous
Weights in Protocol 2 (Force Regression in Newtons)

Combination P1 P2 P3 P4 P5 P6

1 10 0 0 0 0 0
2 20 0 0 0 0 0
3 0 10 0 0 0 0
4 0 20 0 0 0 0
5 0 0 10 0 0 0
6 0 0 20 0 0 0
7 0 0 0 10 0 0
8 0 0 0 20 0 0
9 0 0 0 0 10 0
10 0 0 0 0 20 0
11 10 0 10 0 0 0
12 10 0 20 0 0 0
13 10 0 30 0 0 0
14 10 0 0 0 10 0
15 10 0 0 0 20 0
16 10 0 0 0 30 0
17 20 0 10 0 0 0
18 30 0 10 0 0 0
19 0 0 10 0 10 0
20 0 0 10 0 20 0
21 0 0 10 0 30 0
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Fig. 4. Smart environment protocol. (a) Smart environment setup:
entrance carpet (L1), chair (L2), bathroom handrail (L3), bedroom
carpet (L4), bed (L5), and desktop (L6). (b) FFNN model for the
smart environment protocol.
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applied in the DNP-doped optical fiber. Results of the FFNN
classification model showed that the accuracy value converged
to 99.43% and the loss (MSE) value to 0.0144 for 40 epochs.
Such results indicate the suitability of the proposed approach
for multiple impact classification, in which the high accuracy
indicates negligible errors in the perturbation detection. To
verify the classification at each position, Fig. 6 shows the con-
fusion matrices (for each label/position) for single and multiple
perturbation detection using deep learning/TRA-based sys-
tems. At each position, the classification was approximately
99% or more, in which the positions P2, P4, and P6 presented
100% accuracy. The misclassified samples may be related to
mechanical deviations during the Protocol 1 experiment.

In Protocol 2, results of the FFNN regression model metrics
showed that the RMSE value converged to 1.53N and the loss
(MSE) value to 0.17N for 200 epochs. It represents 5% and
0.5%, respectively, of the total force range employed in this
experiment. Also, for each position the real and predicted forces
were compared, as presented in Fig. 7.

The results showed a coefficient of determination (R2)
higher than 0.99 and an RMSE approximately 1N or lower
for positions P1, P2, P4, and P5. At position P3, when the
force was 30N, the FFNN regression model presented errors,
which resulted in an R2 of 0.956 and an RMSE of 2.68N.
Since only the results referring to this position presented worse
performance, it may be related to errors during the force ap-
plication on this position. The results also may improve with
an increase in the dataset for each condition; i.e., more experi-
ments can reach better regression model performance. In addi-
tion to the errors due to the force application positioning in the
optical fiber (such as perpendicularity and lateral displace-
ments, which lead to a reduction in the force transmitted to
the optical fiber), there are errors due to the nonlinearities
in the sensor responses in some locations along the fiber.
Such nonlinear responses can be related to nonuniformities
on the nanoparticle distribution along the optical fiber length
and diameter. It is also worth mentioning that such errors can
be reduced if nonlinear models are used on the regression of P3.
However, for comparison purposes, we presented the same
model (linear regression) for all sensors to compare their linear-
ity from the R2.

Finally, Fig. 8 presents the temporal analysis of the forces
applied on each position during Protocol 2. The continuous
line represents the real force, whereas the dotted line represents
the force predicted by the regression model. It is possible to
observe a similarity between the curves. P1 presents a predic-
tion curve similar to the real one during almost the entire test.
However, when a force of 30N is applied at position P3, the
neural network model confuses P3 with P1, which leads to er-
rors in these prediction curves. It may be an error in the regres-
sion model design due to similar inputs for P1 and P3. These
punctual errors could be improved with an increase in the force
range employed in this protocol and a bigger dataset.

B. Smart Environment Based on the Proposed
System
Figure 9 presents the results of the transmitted and reflected
optical powers during the smart environment protocol. The
data are normalized by the results of the unstrained fiber.
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It is possible to identify the events in which the volunteer ac-
cesses the locations ordered in Fig. 4, which was previously pre-
sented in Section 2.B. The first location (L1, entrance carpet) is
the nearest point to the reflection photodetector, whereas the
last location (L6, desktop) is the farthest one. It leads to a higher
reflected optical power variation for locations closer to this
photodetector, as presented in Fig. 9. Thus, if the force is
applied close to the location L1, for example, there will be a
variation similar to the one obtained at around 1000 samples
(as presented in the bottom graph of Fig. 9), since the reflected
optical power is proportional to the perturbation location,
which is used as the main mechanism for perturbation location

detection. For this reason, if the perturbation location is set as a
constant distance to the reflection photodetector, the normal-
ized reflected optical power will present the same variation due
to the sensor’s repeatability.

The transmitted optical power is related to the force applied
on the optical fiber, whereas the reflected optical power is re-
lated to the location of this force. The disturbance points of
each place require different forces; i.e., on the carpets, the force
applied on the fiber is proportional to the volunteer’s weight,
whereas, on the bathroom handrail, the force can vary with a
user’s need to control his/her balance. For this reason, the trans-
mitted optical power variation does not present a pattern. On
the other hand, the reflected optical power variation decreases
as the distance from the reflection photodetector increases. This
is because the fiber length is longer, which leads to a weaker
reflected signal than when using shorter fiber lengths. Thus,
there is a higher reflected optical power variation in location
L1, since it is closer to the reflection photodetector than loca-
tion L6. It is worth emphasizing that the reflection optical
power variation decreases as a function of the distance between
the mechanical perturbation point and the reflection photo-
detector.

The results of the FFNN model are presented in Fig. 10.
The accuracy and the loss converged, respectively, to approx-
imately 100% and 0.01. The convergence of the model to an

Fig. 8. Temporal analysis of real and predicted forces applied on
each position.

Fig. 9. Results of transmitted and reflected optical power using the
TRA setup for place identification in the smart environment.
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accuracy of 100% represents the ability to identify the places
that the person (or two persons) accessed. This identification
can be processed online, and it allows remote monitoring by
clinicians located in hospitals with high accuracy.

Based on the results of the classification metrics, the FFNN
model can be used as the classifier of new data and can help
identify the places accessed. Figure 11 presents an example
of the result of the new data classification using the designed
FFNN model. The input data are normalized between −1 and
1, as previously mentioned, and the first value corresponds to
the transmitted optical power, whereas the last value corre-
sponds to the reflected optical power. The real output consists
of binary numbers in which 1 represents the case when a place
is accessed and 0 represents the case when no place is accessed.
The predicted output is the result of the FFNNmodel based on
an input sample and corresponds to the probabilities of each
class. These probabilities are rounded for accuracy estimation.

Different results were achieved using other machine learning
algorithms to classify events in distributed sensing. Table 3
presents the comparison between different outcomes of re-
searchers in the literature. It is important to notice that the
OFS techniques mentioned in Table 3 are distributed sensing
approaches, whereas TRA is a single-event technique. Thus, the
results achieved in this paper enable the application of low-cost
TRA-based sensors to detect multiple and simultaneous events
as an alternative to high-cost distributed sensing approaches.

4. CONCLUSION

This study presents the development and performance analysis
of a low-cost multiple disturbance tracking system based on the
combination of DNP-doped fiber, the TRA technique, and AI
algorithms. A machine-learning-based analysis of multiple si-
multaneous disturbances applied on a TRA-based distributed
sensor using a DNP-doped fiber was performed to address
one of the major problems in the TRA-based approach;
i.e., the ability to detect simultaneous perturbations along
the optical fiber. The results showed an accuracy of 99.43%
in the detection of single-point, two-point, and three-point per-
turbations (using the same force), which demonstrate the abil-
ity to identify the location of multiple simultaneous
disturbances. The results of experiments using different forces
during two-point perturbation also presented an RMSE of
1.53N and R2 higher than 0.95 between real and predicted
forces. These preliminary studies showed the ability not only
to identify the disturbance location but also to identify which
force was applied to each location, enabling the development of
distributed sensors with a low-cost technique as an alternative
to costly distributed sensing methods. Finally, in the smart
environment application, the results showed an accuracy of
100% in the identification of the position of different persons
in the environment. These results validate the use of the pro-
posed system as a remote healthcare service to continuously
monitor patients, which enables intelligent decision-making.
Thus, we believe that using an AI-integrated OFS for low-cost
remote distributed monitoring can provide novel applications
for distributed OFSs for widespread use in the general public
and lead to applications that involve low-cost sensing ap-
proaches that are not yet covered by distributed OFSs. In ad-
dition, the decision-making can be generalized or improved for
diagnosis not only of the physical conditions, but also for indi-
rect emotional aspects of a user based on their daily routine and
activities. There are, however, two major limitations in this
study that can be addressed in future research. First, the study
focused on six points along the fiber with a maximum of three
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Fig. 11. Results of the classification of new data using the designed FFNN model for three different conditions: (a) two persons at home, (b) one
person at home, and (c) no person at home.

Table 3. Comparison of Outcomes Using Different
Machine Learning Algorithms to Classify Events in
Distributed Sensing

Ref. Algorithm OFS Accuracy

[36] ANN OFDR 94.00%
[37] SVM Φ-OTDR 94.17%
[38] CNN Φ-OTDR 96.67%
[39] CNN-LSTM MZI 97.00%
This paper FFNN TRA 99.43%
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points of simultaneous disturbances for the proof of concept.
Second, the maximum fiber length used in this work was 20 m,
and it was possible to observe that the farthest point from the
reflection photodetector already presented low optical power.
Future tests will involve adding points and more simultaneous
perturbations to improve the system’s robustness. In addition,
future tests also will include fibers longer than 20 m to evaluate
the relationship between the fiber length and the system per-
formance. Finally, future work will involve the use of the pro-
posed system in smart environments for clinical validation with
patients.
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